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Abstract—Evaluation of energy consumption and device life-
time in battery-powered wireless sensor networks (WSN) is
almost exclusively based on estimates of the total charge (i.e.
mA-h) consumed by the device. In reality, batteries are complex
electro-chemical systems and their discharge behavior depends
heavily on the timing and intensity of the applied load. However,
there is very little empirical data or reliable models available for
the kinds of batteries and loads that are typically used in WSN.
The effect of battery dynamics on sensor lifetime is therefore not
well understood.

We characterize CR2032 Li coin cells using carefully controlled
synthetic loads and a wide range of WSN-typical load parameters.
Our results are the first to quantify in-depth the discharge
behavior of primary batteries in the WSN context. We report
that in some common cases, observed lifetimes can differ from
predicted ones by almost a factor of three. Furthermore, loads
with similar average currents – which would be expected to have
similar lifetimes – can vary significantly in the amount of capacity
they can utilize, with short duration loads generally faring better.

The results show that energy evaluation based on a mA-h
consumed model has significant limitations. This has important
implications for the design and evaluation of WSN applications,
as well as for practical problems in network dimensioning and
lifetime prediction.

I. INTRODUCTION

Battery-constrained wireless sensor networks (WSN) are
designed to maximize their useful lifetime by minimizing
the battery capacity (mA-h) consumed by devices over time.
Estimates of this value are the basis of almost all WSN energy
performance evaluation and lifetime prediction.

Under this energy consumption model, the battery itself is
treated as a simple store of charge. In reality, batteries are
complex electro-chemical systems: The timing and intensity of
the applied load determines how much of the battery’s nominal
capacity can be utilized before the output voltage drops below
the level needed to operate the device.

The macroscopic properties of battery discharge – rate
dependent capacity, charge recovery, higher sensitivity to load
at low SoC – are well known. However, quantitative results
are highly specific to each battery chemistry and structure, as
well as to the operating regime. Very little data is available for
the kinds of inexpensive, primary (non-rechargeable) batteries
and high current/short duration loads that are found in many
WSN applications.

The impact of battery dynamics on sensor lifetime is
therefore a poorly understood aspect of WSN performance.
Without data about battery output voltage in response to load,
it is not clear whether the “mA-h consumed” model provides
a sufficiently accurate view of device lifetime. Clarifying this
has important implications not only for design and evaluation
of WSN hardware and software, but also for dimensioning,
lifetime prediction, and load balancing in deployed networks.

The contributions of this work are as follows:
• We present a large scale characterization of the Panasonic

CR2032 battery, an inexpensive, primary lithium coin cell
that is often used in body-area WSN. Our results are the
first to thoroughly quantify battery discharge behavior
in the WSN context. The measurements were obtained
using a custom testbed that is capable of generating
carefully controlled synthetic loads using a wide range of
WSN-typical parameters. Over 50 systematically defined
combinations of load parameters were examined.

• Our data show that at low duty cycles, the observed
lifetime differs from the lifetime predicted by “mA-h
consumed” models by as much as 260%, even when the
effect of high loads on capacity is taken into account.

• We examine sets of periodic loads with the same time-
average current, but different load values, duty cycles,
and active periods to explore the impact of various load
parameters on sensor lifetime. Such loads are expected to
have the same lifetime, since charge is being consumed at
the same rate. Instead, we observe differences in lifetime
of as much as 15-20%. The data suggest that shorter load
durations are associated with longer observed lifetimes,
especially high current loads at low duty cycles.

These results quantify the approximation associated with the
ubiquitous “mA-h consumed” model of battery consumption,
with implications for evaluating WSN energy performance and
estimating device lifetime. The data also provide a solid em-
pirical basis for future work in truly “battery-aware” methods
in WSN applications.

II. BACKGROUND

Our test batteries were CR2032 lithium coin cells, with
nominal 3.0V output voltage and 225 mA-h capacity (at rated
capacity of 200µA), manufactured by Panasonic. Because of978-1-4799-4937-3/14/$31.00 c©2014 IEEE
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Fig. 1. CR2032 Li-coin cell: output voltage in response to a 300Ω (10mA)
load with 6.2 ms duration.

its low cost and small size, the CR2032 is especially popular
for sport and body-area WSN applications, as well as for
computational RFID and logistics applications. The slightly
larger CR2354 battery (560 mA-h), which is also used in
animal monitoring networks and smaller general purpose WSN
platforms, has the same chemistry and similar structure.

A battery consists of an anode and cathode, separated
by electrolyte and a permeable membrane (to prevent an
internal short). In Li-MnO2-based lithium batteries (CRxx),
the Li anode is oxidized (Li → Li+ + e−) and the Li+

ions diffuse through the electrolyte (an organic solvent) – the
corresponding electrons flow through the applied load – to
the MnO2 cathode, which is reduced. This reaction is not
reversible, so this is a non-rechargeable battery1.

As the battery is discharged and the active species at the
anode and cathode are consumed, the battery’s state of charge
(SoC) decreases. This means not only that the residual charge
capacity has decreased, but also that there have been changes
in the chemical and physical properties of the electrodes and
the composition of the electrolyte. These changes affect the
battery’s electrical properties, especially the internal resistance
and the efficiency of the electro-chemical reactions. Moreover,
these effects are highly specific to each battery chemistry
and structure, and (to a lesser extent) even to a particular
manufacturer. It is therefore impossible to generalize quan-
titative results across different types of batteries. The details
of these processes are the domain of material chemistry and
far beyond the scope of this work. For our purposes, we need
only recognize that battery voltage has complex dependencies
on the timing and intensity of the applied load and focus our
attention on macroscopic behaviors.

Figure 1 shows an oscilloscope trace of the output voltage of
a CR2032 Li-coin battery in response to load. When the load is
applied, there is an immediate drop in output voltage (Vload),
caused by the battery’s internal resistance. The output voltage
then continues to decrease slightly over the duration of the
load (Vmin). This voltage drop reflects how well the electro-

1Note that the chemistry and structure of secondary (rechargeable) Li-ion
batteries is quite different.

Fig. 2. CR2032 Li-coin cell: voltage response over a sequence of periodic
loads (ETC Battery and FuelCells Sweden AB).

chemical reactions in the battery “keep up” with the demand
from the applied load, reflecting the accessibility of active
species at the electrodes and efficiency of transport through
the electrolyte. The voltage partially recovers after the load
is removed, with the immediate recovery from the battery’s
internal resistance and the slower one reflecting processes
that relax the changes in the electro-chemical state that have
accumulated during discharge (Vrecover).

Figure 2 shows the output voltage in response to a periodic
load over a longer time scale. The load is composed of
two alternating elements: A 1mA load is applied for 11h,
followed by a rest time of 8.5h – each active period reduces
the state of charge (SoC) by ∼5%. A 22mA load is applied
for 10s, followed by a 30min rest, demonstrating how the
load response varies with the SoC. (This load is based on a
standard battery test sequence.) The load and recovery effects
are clearly visible: The high current load causes a much larger
voltage drop than the low current load. The internal resistance
increases as SoC decreases, due to electro-chemical changes
that impede the flow of ions. As the battery SoC decreases,
the recovery effect also becomes smaller and the voltage drop
over the duration of the load also becomes much steeper, due
to depletion of active species and other changes in the battery
chemistry and structure.

Eventually the output voltage falls below some cut-off
voltage, which is determined by the requirements of the device
using the battery (usually between 1.8V and 2.2V). Even
though there may be considerable charge remaining in the
battery, it cannot be provided at sufficiently high voltage to
operate the device correctly. It is this cut-off voltage that
actually determines the device lifetime.

At the macroscopic level, we abstract these complex phe-
nomena as rate dependent capacity and charge recovery. Rate
dependent capacity refers to the fact that discharging the
battery at high current results in large voltage drops that
reduce the amount of capacity that can be used before reaching
the cut-off voltage. Charge recovery refers to the fact that
intermittent discharge, with intervals of low or zero load that
allow the output voltage to recover, increases the amount of
capacity that can be used.

Temperature is another key factor in battery performance,
due to its impact on the electro-chemical processes described



Fig. 3. Test card (Rev 2): The processor (bottom right) connects load resistors
to each battery and records output voltage. Cost is <150e.

above. Our experiments were all performed at room tempera-
ture and we defer this very important topic to future work.

III. EXPERIMENT METHODOLOGY

Our goal is to quantify key battery discharge behaviors and
understand what effects are most significant for WSN devel-
opment. The experiment methodology was therefore driven by
the need to run large numbers of experiments for systematic
exploration of load parameters. This also meant it was more
important to be able to vary the load current, duration, and
duty cycle over a range of realistic values than to reproduce
the load generated by specific sensor hardware or protocols.

In previous work, batteries were discharged by connecting
them to operating sensor hardware, which leads to poorly
controlled loads. An operation may involve multiple device
components or state transitions and the cost of operations such
as frame transmission can be variable. Furthermore, the load
can only be controlled indirectly, via system parameters like
transmit power or packet length. To avoid these issues, we
designed the testbed to generate controlled synthetic loads.

In addition, because WSN applications are intended to have
low loads, realistic discharge times are long (weeks). For
practical reasons, it was therefore important to be able to
run many experiments in parallel, which also placed some
constraints on cost per experiment.

A. Testbed

We developed custom hardware (Figure 3) that allows us
to apply a resistive load to sets of batteries according to a
user-defined schedule and measure the battery output voltage.
The boards are connected via USB to a user PC, which sends
configuration commands to the boards and collects data from
them. The testbed is described in more detail in [1].

Each board has an ATmega16U4-AU controller and eight
battery holders, each connected to a set of four swappable
resistors. The controller can be programmed to connect and
disconnect any combination of resistors to the batteries and to
record voltage measurements via its ADC interface.

The control firmware supports user-defined continuous and
periodic loads. The loads used in this work are essentially
simple square waves. However, because the loads are resis-
tors rather than current-controlled elements, the load current
decreases over time, along with the battery output voltage.
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Fig. 4. Raw data for a single battery: 750 Ω (4mA) load with duration
75ms/1.0s (7.5% duty cycle).

Loads can be scheduled with sub-millisecond granularity and
validated using an oscilloscope.

Commercial battery test equipment provides more fine grain
control, including current and voltage controlled loads and
more precise measurements. Such equipment is expensive: A
commercial system costs over e35000 and has less than one-
third of the capacity of our 20 board (160 battery) testbed,
which cost less than e3000. There are also companies that
do battery testing for safety certification (the data in Figure
2 is from such a service). For more than a few batteries, this
approach is also prohibitively expensive. With identification of
macroscopic effects as the goal, the more scalable approach
was preferred.

B. An experiment in detail

To illustrate how the measurement data is processed and
interpreted, we examine a representative experiment in detail.
The experiment used a 750Ω (4mA) load with a duration of
75ms and period of 1 second. In practical terms, these values
suggest an RFM TR1001 radio receiving one ∼150-byte frame
per second. The load has a duty cycle of 7.5% and a nominal
average current of 300µA (4mA×7.5%). Because the battery
voltage decreases over time, the load (V/R) also decreases
over time. This means that the actual average current is less
than the nominal value: ∼276µA. (In the text, currents are
referred to using their nominal value.)

The testbed hardware measures the battery output voltage
at user defined intervals. For periodic loads, the voltage is
measured at each of the three key points shown in Figure 1.
These are Vrecover, measured just before the load is applied;
Vload, measured just after the load is applied; and Vmin,
measured just before the load is removed and assumed to be
the minimum voltage over the period. Since a device fails
when the battery cannot maintain the required output voltage
under load, we take Vmin as the determinant of device lifetime.
(In the following text, voltage refers to Vmin.)

Over the 1000 hour duration of the experiment, nearly 4
million loads were measured for each battery. We first examine
the raw data obtained from one battery. Figure 4 shows the
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Fig. 5. Output voltage vs the consumed capacity. When the output voltage
reaches 2.0V, about 229 mA-h of charge has been extracted from the battery.

values of Vrecover, Vload, and Vmin (y-axis) associated with a
load applied at time t (x-axis) and how they evolve over time.
Vmin first drops below 2.0V at about t=800h, which would be
the lifetime for a device with that cut-off voltage.

When comparing experiments that have different average
currents, it is often useful to consider the capacity that has
been consumed when the cut-off voltage is reached, rather than
time that it takes (i.e. normalizing with respect to current). This
allows us to highlight differences in lifetime that reflect how
load timing and intensity affect the usable capacity, rather than
the obvious difference that comes from consuming capacity
at different rates. Since even loads with the same nominal
average current will have slightly different actual currents,
most results are reported this way. Figure 5 shows the output
voltage (Vmin) from Figure 4 plotted vs consumed capacity,
rather than time.

There is variation among batteries and also premature bat-
tery failure, discussed further in Section IV. When averaging
over a set of batteries from a given experiment, we use the
mean of the n = 3 batteries with the largest Vmin values. The
point is not to exaggerate the absolute capacity, but rather to
focus on the behaviors that arise from the electro-chemical
properties of the battery, rather than manufacturing variation.

C. Experiments

Consider the three idealized loads shown in Figure 6. They
all have the same time-average current and consume battery
capacity (integral of current over time) at the same rate. These
loads would therefore be expected to have the same lifetime
under both simple “mA-h consumed” models and models
that take rate dependent capacity into account. Differences in
lifetime between these loads can therefore be used to study the
effects of load parameters. The load currents and duty cycles,
as well as the absolute load durations and periods used in these
experiments are structured around this principle (Table I).

We use loads ranging from 15kΩ to 120Ω, with most
periodic loads using 4-25 mA nominal currents. For reference,
a CC2420 IEEE 802.15.4 transceiver[2] consumes 8.5-17.4mA
for transmitting and 18.8mA for receiving. The low data
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Fig. 6. Three idealized loads with the same average current. The load
parameters vary systematically: e.g. cutting both the load and the period in
half or cutting the load in half and doubling the duration.

rate RFM TR1001[3] transceiver consumes up to 12mA for
transmitting and 1.8-3.8mA for receiving.

We concentrated on periodic loads with actual time-average
currents of 250-800µA and lifetimes of 10-40 days. Duty
cycles ranged from 1.2% for high currents to 30% for the lower
ones. We also ran some experiments with extremely high duty
cycles (50-90%) to compare with results from earlier work.

Load durations ranged from 2.4ms to 150ms. These are
fairly typical times for operations such as channel sensing,
wakeup preambles, and transmitting short frames using high
(250kbps) and low (19.2kbps) bit rate transmissions.

Load periods ranged from 20ms to 2s. These are typical of
the periods used in various WSN MAC protocols and sensing
applications. These values also span the range of “optimal”
wakeup schedules that were derived in [4] for several MAC
protocols, subject to various delay and reliability constraints.

A 2.0V cut-off voltage was used for all of the results
reported here. For reference, the CC2420 IEEE 802.15.4
transceiver has a minimum input voltage of 2.1V (without
voltage regulator) and the RFM TR1001 transceiver has a
minimum input voltage of 2.2V.

IV. EXPERIMENTAL RESULTS

This section presents four sets of results: We measure
lifetime under various continuous loads to determine the rate
dependent capacities. Then we use these capacities to estimate
lifetime for periodic loads at various duty cycles. Then we
measure the capacity consumed by a variety of periodic
loads, focusing on differences between loads with similar
time-average currents. Finally, we present statistics on battery
variation within experiments.

A. Continuous discharge and rate dependent capacity

Measurements of the battery output voltage under contin-
uous load are used to evaluate the rate dependent capacity.
Figure 7 shows how the battery output voltage decreases as
the battery capacity is consumed. Not only does the higher
load current drain the available capacity more quickly, it is
also only able to use a smaller portion of the capacity before
reaching a cut-off voltage. The figure demonstrates the latter
effect, rather than the factor of n lifetime difference between
currents. (This is the normalization mentioned in the previous
section.)



average current (nominal) and duty cycle

load ↓ duration ↓ 0.3mA 0.6mA 0.9mA 1.2mA 3.0mA 6.0mA 7.5mA
750 Ohm (4mA) 7.5% 15% 22.5% 30% 75% – –
duration and → 15 200 100 66.7 50 20
periods 30 200

45 200
60 200
150 2s 1s 666.7 500 200

300 Ohm (10mA) 3.0% 6.0% 9.0% 12% 30% 60% 75%

duration and → 3 ms 100 ms
periods 6 200

15 166.7 50 25 20
18 200
30 1s
150 500 250 200

120 Ohm (25mA) 1.2% 2.4% 3.6% 4.8% 12% 24% 30%

duration and → 2.4 ms 200 ms
periods 7.2 600 200

12 1s
15 416.7 50
150 500

TABLE I
EXPERIMENTS (SUBSET): THE LEFTMOST COLUMN IS THE LOAD VALUES. THE NEXT COLUMN IS A SET OF LOAD DURATIONS (MS). FOR EACH LOAD

DURATION, THE CORRESPONDING ROW LISTS THE PERIOD (MS EXCEPT WHERE NOTED) AT WHICH THE LOAD IS REPEATED. EACH COLUMN IS A SET OF
EXPERIMENTS WITH THE SAME NOMINAL AVERAGE CURRENT. OVER 50 EXPERIMENTS WERE RUN, WITH 8-10 BATTERIES EACH.
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Fig. 7. Rate dependent capacity: A higher load extracts less capacity for all
cut-off voltages. Not only does a 4mA load drain the battery at a rate 4x
times faster than the 1mA load, but the available capacity is also ∼20% less.

The measured capacity for the 15kΩ (200 µA) reference
load (243 mA-h) is slightly higher than the nominal capacity
of 225 mA-h given by Panasonic[5]. Similarly at 1mA, the
measured capacity was 220mA (vs 200mA). (No data is given
for higher loads.) Presumably the specification is conservative,
to compensate for variation among cheaply manufactured
batteries.

B. Lifetime estimation at various duty cycles

The solid line in Figure 8 shows the estimated lifetime (to
2.0V cut-off) for a variety of 10mA loads with different duty
cycles, using the rate dependent capacity under a continuous
10mA load (100% duty cycle) from the experiments of Figure
7. Each data point represents the observed lifetime (averaged
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Fig. 8. Device lifetime (for 2.0V cut-off) for a 10mA load at different duty
cycles. The solid line shows the expected lifetime, based on the lifetime at
100% duty cycle. The data points are average observed lifetimes for 10mA
loads with the given duty cycle and different absolute periods.).

over max-n batteries, as described in Section III) for a different
combination of load parameters at the given duty cycle (e.g.
15ms/200ms vs 150ms/2s),

At high duty cycles, the observed and estimated lifetimes
are similar. For lower, more realistic duty cycles, the observed
lifetimes are significantly larger. The difference between high
and low duty cycles highlights the risk of extrapolating results
from short experiments run at unrealistically high loads.

Figure 9 presents this data as the relative difference between
the observed and expected lifetime, for a wider range of loads.
Once the duty cycle is below ∼60% (4mA loads) or ∼30%
(10mA loads), the observed lifetime seems to stabilize at 1.2x
and 2.6x times larger than would be expected based on the
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Fig. 9. Observed lifetime relative to expected lifetime based on rate dependent
capacity for the load current. At a given duty cycle, the observed lifetimes vary
somewhat depending on absolute load duration and period (vertical clusters
of data points).

smaller duty cycle alone.
This suggests that there is a point at which further reducing

the duty cycle does not result in additional benefits from
charge recovery. Since higher loads put more stress on the
battery, the gain is larger and continues to accrue over a larger
range of duty cycles than it does for lower loads.

We also note some variation among observed lifetimes at the
same load and duty cycle. These experiments differ only in the
absolute load duration and period, so they would be expected
to have the same lifetime. The differences between them, seen
in the vertical spread of data points at each duty cycle, suggests
that load duration also plays a role in determining capacity and
lifetime.

C. Parameter exploration

The next sequence of results explores the relationship be-
tween a load’s time-average current and the battery capacity
it utilizes before reaching a cut-off voltage (2.0V). Systematic
variations in load parameters were used to define sets of ex-
periments with different load durations, periods, and currents,
but the same time-average current (columns in Table I). These
experiments allow us to investigate how capacity depends on
average current (i.e. another view of rate dependent capacity)
and also the extent to which capacity depends on the timing
and intensity of the load.

The data are shown in Figures 10 and 11: The specified
capacity (horizontal line) is 225 mA-h [5]. The rate dependent
capacity (slanted line) is based on capacities measured using
a continuous current. Compared to these two references, each
data point represents the results of an experiment using a
different combination of periodic load parameters from Table
I and shows the mean capacity extracted from the battery vs
the time average current for the load.

The rate dependent capacity effect is clearly visible: As
the average current increases, the amount of charge that can
be extracted from the battery decreases. The relationship
observed in the data points from measurements of periodic
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Fig. 10. Capacity vs average current: Each data point represents a different
load configuration specified in Table I. Loads with the same peak current

loads is roughly similar to the data based on measurements of
continuous loads with the same average current. This method
provides better lifetime estimates than those based on the rate
dependent capacity of the peak load, used in the previous
section (Figures 8 and 9).

However, the difference in capacity consumed by loads with
very similar average current cannot be explained by differences
in rate dependent capacity. Some other aspect of load timing
and intensity must be at work. For example, we see that a load
with average current of 239µA consumes 271 mA-h capacity,
while one with an average current of 251µA current consumes
234mA-h. This 12µA (4.8%) difference in average current
results in a ∼15% difference in consumed capacity and ∼19%
(47 vs 39 days) difference in lifetime for the two loads.

This result quantifies the amount of approximation associ-
ated with using energy performance metrics based on total
mA-h consumed. Even taking rate dependent capacity into
account (which many widely used methods do not), it is not
possible to predict this rather significant difference in lifetime.

Figure 11 shows detail of Figure 10, highlighting the low
time-average currents that are most relevant to WSN. For
a given average current, higher peak currents (i.e. lower
duty cycles) have better capacity utilization. Although this
seems to conflict with the general principle of rate dependent
capacity, Figure 2 suggests an explanation. As the battery SoC
decreases, the voltage drop that occurs over the duration of the
load becomes relatively larger and steeper. A higher load has a
higher initial voltage drop, but a shorter load duration means
that there is less time for the secondary process to have an
impact.

D. Battery variation

There is also some variation observed between individual
batteries subject to the same load. Figure 12 shows output
voltage vs time for all the batteries measured in the exper-
iment of Section II. More generally, for the 300µA group
of experiments, the measured standard deviation was 14-29h
on lifetimes of 800-900h. We also note that ∼ 2-3% of the
batteries we measured (out of many hundreds) exhibited early
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Fig. 11. Detail of Figure 10.

failure or erratic output voltage after an initial period of
apparently normal operation.

This is not unexpected, given the low precision manufactur-
ing of inexpensive batteries, but is of practical importance to
WSN developers. For industrial consumers of these batteries,
one of the most important factors that distinguishes among
various manufactures is their consistency.

V. RELATED WORK

A. The WSN context

There are three main techniques for evaluating energy
consumption in WSN. Specialized hardware can be used to
measure the current drawn from the battery, e.g. [6], [7].
More commonly, system software is instrumented to record
the time spent performing various operations, e.g. [8] and this
trace is combined with information about the cost of each
operation to determine the consumed capacity. This approach
is evaluated in [9], which concludes that high accuracy can be
obtained by calibrating the system with careful measurements
of operation cost. WSN simulation, e.g. [10], [11], [12] can
similarly generate detailed traces of the operation of the
simulated device. All of these methods only consider the
capacity consumed by the device and treat the battery as a
simple “bucket of mA-h”.

There have been very few studies of the small, inexpensive
batteries typically used in WSN. Although rate dependent
capacity and charge recovery effects can be seen in earlier
results, no previous work has used carefully controlled loads
and a broad range of realistic parameters to systematically
explore battery discharge in the WSN operating regime.

In [13], the authors measured the CR2354 coin cell (similar
to the CR2032 used in our experiments). The load was
generated by an AVR/RFM DR3000 transceiver, which was
powered via a pulse frequency modulation DC-DC converter.
The sensor’s current draw (4-12mA) is therefore seen at the
battery as a high frequency load with a very high peak current
(80mA). The authors highlight that DC-DC efficiency is only
about 70% (such converters are not generally used in modern
sensors). Although such loads are no longer representative
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Fig. 12. Ten batteries discharged using the same load (Figure4): The key
observation is the considerable variation among the discharge curves, rather
than the time evolution of any specific battery.

of sensor hardware and the authors do not attempt to draw
quantitative conclusions, rate dependent capacity and charge
recovery effects can be seen in the data.

In [14], the authors also studied the CR2354. Measurement
data were used to partially parameterize the DUALFOIL
electro-chemical simulator, which is actually intended for a
very different rechargeable Li-ion battery chemistry. The au-
thors modified an (unspecified) subset of the simulator’s >50
chemical and physical parameters, until its output resembled
their experimental data, though the accuracy of this approach
was not reported. The authors then built simulation and emula-
tion tools to model sensor lifetime for the Mica2DOT sensor
and CC1000 transceiver. Significant rate dependent capacity
and charge recovery effects can be seen in the results, although
they are not systematically quantified or compared with direct
measurements. The duty cycles studied in this work were also
unrealistically high (25-80%).

In [15], device lifetime is determined by intentionally run-
ning batteries to depletion in a testbed. The authors measured
device performance while Telos-B nodes (using AA batteries)
performed a complex task sequence including duty-cycling,
transmission, reception, and logging to flash memory. The
authors report significant variation between battery brands,
as well as differences between observed lifetime and that
predicted by a simple mA-h consumed model. Unlike our
results, the observed lifetimes are shorter than the predicted
ones as the duty cycle drops below 75% toward 25%. However,
rate dependent capacity does not seem to have been taken
into account and again the duty cycle is unrealistically high.
Despite interesting observations, the complex load and many
interacting systems make it difficult to isolate and understand
battery related effects.

Finally, Nordic Semiconductor and Energizer recently pub-
lished a report [16] describing the evaluation of pulsed dis-
charge patterns for their CR2032 batteries. This is similar to
our work, but uses much higher loads (which the battery was
shown to tolerate) and only a few sets of parameterizations.



B. Battery modeling

Battery modeling was first introduced to the mobile com-
puting community in the late 1990’s due to growing interest
in devices like PDA’a. There are many approaches to bat-
tery modeling [17], ranging from abstract analytic models
to detailed electro-chemical simulations. The former must
be parameterized and tuned using experimental data, while
the latter are highly battery specific, requiring dozens of
parameters to describe its chemical and structural properties.
An older analytic model introduced in [18] for rechargeable
Li-ion batteries was recently ported to ns-3 [12].

In general, there seems to have been relatively little interest
in modeling the small, inexpensive primary batteries intended
for WSN applications. However, an electro-chemical model
[19] for Li-MnO2 Li coin cells has recently become available
[20]. An evaluation [21] of this simulator and two other
abstract battery models parameterized using data from our
testbed has proved somewhat equivocal.

VI. CONCLUSION AND FUTURE WORK

This paper has posed a novel question of practical impor-
tance to the WSN community: How do the dynamics of battery
discharge affect sensor lifetime?

A battery’s output voltage is determined by complex electro-
chemical processes that depend on the timing and intensity
of the load during discharge. The output voltage determines
sensor lifetime: When the battery is no longer able to maintain
a sufficiently high output voltage in response to the load
presented by the device, it will fail to operate correctly.

This work is the first to provide an in-depth quantitative
description of battery discharge behavior in the WSN context.
We have developed a large scale testbed that is capable of
generating carefully controlled synthetic loads and used it
to systematically characterize the Panasonic CR2032 non-
rechargeable lithium coin cell under under a wide range of
WSN-typical load parameters.

We have focused on macroscopic properties such as rate
dependent capacity and charge recovery and their impact on
sensor lifetime. Our results show that there can be errors of
almost a factor of 3 in lifetime prediction, when modeling
low duty cycles. Furthermore, even loads with very similar
average currents can have differences of up to 15-20% in
device lifetime. In general, higher loads (and hence lower duty
cycles) are associated with longer observed lifetimes.

In the longer term, these results will contribute to improved
methods for battery-aware design and evaluation of WSN
protocols and systems. Options for future development range
from using empirical models to add correction factors to “mA-
h consumed” lifetime estimates, to developing analytic models
of the discharge process that can be parameterized using
measurement data and integrated with existing simulation tools
and operating counting techniques that already model the load
current generated by the device. Because WSN loads are more
complex than the simple square waves used in our study, an
obvious next step will be to characterize the behavior of more
realistic combined loads.

Another practical problem is estimating battery state-of-
charge (or lifetime), especially in real time and with limited
WSN resources. This is needed for network dimensioning,
to provide advance warning of coverage failures in deployed
networks, and for battery-aware load balancing. Battery state
is affected not only by the cost of a sensor’s prescribed
operations, but also by external factors like interference con-
ditions, temperature (key future work), and battery variation.
A combination of improved battery models and empirical
discharge data may enable new SoC estimation techniques.
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